Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202317756, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523073

RESUMO

Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.

2.
Alzheimers Dement ; 20(2): 1013-1025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849026

RESUMO

INTRODUCTION: Signatures of a type-I interferon (IFN-I) response are observed in the post mortem brain in Alzheimer's disease (AD) and other tauopathies. However, the effect of the IFN-I response on pathological tau accumulation remains unclear. METHODS: We examined the effects of IFN-I signaling in primary neural culture models of seeded tau aggregation and P301S-tau transgenic mouse models in the context of genetic deletion of the IFN-I receptor (IFNAR). RESULTS: Polyinosinic:polycytidylic acid (PolyI:C), a synthetic analog of viral nucleic acids, evoked a potent cytokine response that enhanced seeded aggregation of tau in an IFN-I-dependent manner. IFN-I-induced vulnerability could be pharmacologically prevented and was intrinsic to neurons. Aged P301S-tau mice lacking Ifnar1 had significantly reduced tau pathology compared to mice with intact IFN signaling. DISCUSSION: We identify a critical role for IFN-I in potentiating tau aggregation. IFN-I is therefore identified as a potential therapeutic target in AD and other tauopathies. HIGHLIGHTS: Type-I IFN (IFN-I) promotes seeded tau aggregation in neural cultures. IFNAR inhibition prevents IFN-I driven sensitivity to tau aggregation. IFN-I driven vulnerability is intrinsic to neurons. Tau pathology is significantly reduced in aged P301S-tau mice lacking IFNAR.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Tauopatias , Camundongos , Animais , Proteínas tau/genética , Interferon Tipo I/uso terapêutico , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/patologia , Modelos Animais de Doenças
3.
Alzheimers Dement ; 20(3): 1894-1912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148705

RESUMO

INTRODUCTION: The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-ß (Aß) have never been experimentally studied in primates phylogenetically close to humans. METHODS: We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aß. RESULTS: Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aß injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aß co-injected macaques. DISCUSSION: Oligomeric-Aß mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS: This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aß in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.


Assuntos
Doença de Alzheimer , Príons , Animais , Humanos , Idoso , Doença de Alzheimer/patologia , Macaca/metabolismo , Proteômica , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia
4.
Cell Rep ; 42(7): 112725, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37393617

RESUMO

Tau is a soluble protein interacting with tubulin to stabilize microtubules. However, under pathological conditions, it becomes hyperphosphorylated and aggregates, a process that can be induced by treating cells with exogenously added tau fibrils. Here, we employ single-molecule localization microscopy to resolve the aggregate species formed in early stages of seeded tau aggregation. We report that entry of sufficient tau assemblies into the cytosol induces the self-replication of small tau aggregates, with a doubling time of 5 h inside HEK cells and 1 day in murine primary neurons, which then grow into fibrils. Seeding occurs in the vicinity of the microtubule cytoskeleton, is accelerated by the proteasome, and results in release of small assemblies into the media. In the absence of seeding, cells still spontaneously form small aggregates at lower levels. Overall, our work provides a quantitative picture of the early stages of templated seeded tau aggregation in cells.


Assuntos
Doença de Alzheimer , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Citosol/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Agregados Proteicos
5.
Science ; 380(6651): 1258-1265, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347855

RESUMO

During initiation of antiviral and antitumor T cell-mediated immune responses, dendritic cells (DCs) cross-present exogenous antigens on major histocompatibility complex (MHC) class I molecules. Cross-presentation relies on the unusual "leakiness" of endocytic compartments in DCs, whereby internalized proteins escape into the cytosol for proteasome-mediated generation of MHC I-binding peptides. Given that type 1 conventional DCs excel at cross-presentation, we searched for cell type-specific effectors of endocytic escape. We devised an assay suitable for genetic screening and identified a pore-forming protein, perforin-2 (Mpeg1), as a dedicated effector exclusive to cross-presenting cells. Perforin-2 was recruited to antigen-containing compartments, where it underwent maturation, releasing its pore-forming domain. Mpeg1-/- mice failed to efficiently prime CD8+ T cells to cell-associated antigens, revealing an important role for perforin-2 in cytosolic entry of antigens during cross-presentation.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , Endocitose , Proteínas Citotóxicas Formadoras de Poros , Animais , Camundongos , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/genética , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Endocitose/genética , Endocitose/imunologia , Testes Genéticos , Antígenos de Histocompatibilidade Classe I , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteólise
6.
Science ; 379(6639): 1336-1341, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996217

RESUMO

Aggregates of the protein tau are proposed to drive pathogenesis in neurodegenerative diseases. Tau can be targeted by using passively transferred antibodies (Abs), but the mechanisms of Ab protection are incompletely understood. In this work, we used a variety of cell and animal model systems and showed that the cytosolic Ab receptor and E3 ligase TRIM21 (T21) could play a role in Ab protection against tau pathology. Tau-Ab complexes were internalized to the cytosol of neurons, which enabled T21 engagement and protection against seeded aggregation. Ab-mediated protection against tau pathology was lost in mice that lacked T21. Thus, the cytosolic compartment provides a site of immunotherapeutic protection, which may help in the design of Ab-based therapies in neurodegenerative disease.


Assuntos
Anticorpos Monoclonais , Imunização Passiva , Ribonucleoproteínas , Tauopatias , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas tau , Animais , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Citosol/metabolismo , Modelos Animais de Doenças , Receptores Fc , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas tau/imunologia , Tauopatias/terapia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Brain ; 146(6): 2524-2534, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382344

RESUMO

Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Tauopatias , Animais , Masculino , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Doenças Neurodegenerativas/patologia , Macaca mulatta/metabolismo , Projetos Piloto , Tauopatias/patologia , Encéfalo/patologia
8.
Front Cell Neurosci ; 16: 949340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910253

RESUMO

The detection of pathogen-associated molecular patterns can elicit the production of type-I interferons (IFNs), soluble cytokines that induce a transcriptional state inhibitory to viral replication. Signatures of type-I IFN-driven gene expression, and type-I IFNs themselves, are observed in the central nervous system during neurodegenerative diseases including Alzheimer's disease and other tauopathies, the umbrella term for diseases that feature aggregation of the cytosolic protein tau. The contribution of the type-I IFN response to pathological progression of these diseases, however, is not well-understood. The wholesale transcriptional changes that ensue from type-I IFN production can both promote protective effects and lead to damage dependent on the context and duration of the response. The type-I IFN system therefore represents a signaling pathway with a potential disease-modifying role in the progression of neurodegenerative disease. In this review we summarize the evidence for a type-I IFN signature in AD and other tauopathies and examine the role of aggregated proteins as inflammatory stimuli. We explore both the protective role of IFN against protein pathologies as well as their downstream toxic consequences, which include the exacerbation of protein pathology as a potentially destructive feed-forward loop. Given the involvement of type-I IFNs in other neurogenerative diseases, we draw comparisons with other categories of homotypic protein aggregation. Understanding how type-I IFN influences progression of AD and other tauopathies may yield important insight to neurodegeneration and identify new targets in an area currently lacking disease-modifying therapies.

9.
Cell Rep ; 39(5): 110776, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508140

RESUMO

Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.


Assuntos
Doença de Alzheimer , Príons , Doença de Alzheimer/metabolismo , Colesterol/metabolismo , Citosol/metabolismo , Humanos , Neurônios/metabolismo , Príons/metabolismo , Proteínas tau/metabolismo
10.
Semin Cell Dev Biol ; 126: 97-98, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35241366
11.
Semin Cell Dev Biol ; 126: 138-149, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34654628

RESUMO

Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.


Assuntos
Doenças Neurodegenerativas , Complexo Antígeno-Anticorpo/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ribonucleoproteínas/metabolismo
12.
Sci Adv ; 7(43): eabg4980, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669475

RESUMO

The microtubule-associated protein tau aggregates in multiple neurodegenerative diseases, causing inflammation and changing the inflammatory signature of microglia by unknown mechanisms. We have shown that microglia phagocytose live neurons containing tau aggregates cultured from P301S tau mice due to neuronal tau aggregate-induced exposure of the "eat me" signal phosphatidylserine. Here, we show that after phagocytosing tau aggregate-bearing neurons, microglia become hypophagocytic while releasing seed-competent insoluble tau aggregates. These microglia express a senescence-like phenotype, demonstrated by acidic ß-galactosidase activity, secretion of paracrine senescence-associated cytokines, and maturation of matrix remodeling enzymes, results that are corroborated in P301S mouse brains and ex vivo brain slices. In particular, the nuclear factor κB­dependent activation of matrix metalloprotease 3 (MMP3/stromelysin1) was replicated in brains from patients with tauopathy. These data show that microglia that have been activated to ingest live tau aggregates-bearing neurons behave hormetically, becoming hypofunctional while acting as vectors of tau aggregate spreading.

13.
Sci Rep ; 11(1): 12946, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155306

RESUMO

The deposition of tau aggregates throughout the brain is a pathological characteristic within a group of neurodegenerative diseases collectively termed tauopathies, which includes Alzheimer's disease. While recent findings suggest the involvement of unconventional secretory pathways driving tau into the extracellular space and mediating the propagation of the disease-associated pathology, many of the mechanistic details governing this process remain elusive. In the current study, we provide an in-depth characterization of the unconventional secretory pathway of tau and identify novel molecular determinants that are required for this process. Here, using Drosophila models of tauopathy, we correlate the hyperphosphorylation and aggregation state of tau with the disease-related neurotoxicity. These newly established systems recapitulate all the previously identified hallmarks of tau secretion, including the contribution of tau hyperphosphorylation as well as the requirement for PI(4,5)P2 triggering the direct translocation of tau. Using a series of cellular assays, we demonstrate that both the sulfated proteoglycans on the cell surface and the correct orientation of the protein at the inner plasma membrane leaflet are critical determinants of this process. Finally, we identify two cysteine residues within the microtubule binding repeat domain as novel cis-elements that are important for both unconventional secretion and trans-cellular propagation of tau.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Proteínas tau/biossíntese , Proteínas tau/genética , Animais , Células CHO , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Cromatografia Líquida , Cricetulus , Cisteína/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Fosforilação , Transporte Proteico , Proteínas Recombinantes , Retina/metabolismo , Espectrometria de Massas em Tandem
14.
Acta Neuropathol Commun ; 9(1): 41, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712082

RESUMO

A fundamental property of infectious agents is their particulate nature: infectivity arises from independently-acting particles rather than as a result of collective action. Assemblies of the protein tau can exhibit seeding behaviour, potentially underlying the apparent spread of tau aggregation in many neurodegenerative diseases. Here we ask whether tau assemblies share with classical pathogens the characteristic of particulate behaviour. We used organotypic hippocampal slice cultures from P301S tau transgenic mice in order to precisely control the concentration of extracellular tau assemblies in neural tissue. Whilst untreated slices displayed no overt signs of pathology, exposure to recombinant tau assemblies could result in the formation of intraneuronal, hyperphosphorylated tau structures. However, seeding ability of tau assemblies did not titrate in a one-hit manner in neural tissue. The results suggest that seeding behaviour of tau arises at high concentrations, with implications for the interpretation of high-dose intracranial challenge experiments and the possible contribution of seeded aggregation to human disease.


Assuntos
Príons/patogenicidade , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tauopatias/patologia , Tauopatias/fisiopatologia , Proteínas tau/metabolismo , Doença de Alzheimer , Animais , Modelos Animais de Doenças , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Fosforilação , Agregação Patológica de Proteínas/metabolismo , Tauopatias/metabolismo , Técnicas de Cultura de Tecidos , Proteínas tau/genética
15.
Nat Struct Mol Biol ; 28(3): 278-289, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633400

RESUMO

Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21-nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.


Assuntos
Proteólise , Ribonucleoproteínas/metabolismo , Ubiquitinação , Animais , Biocatálise , Linhagem Celular , Drosophila melanogaster/citologia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Camundongos , Modelos Moleculares , Optogenética , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Ribonucleoproteínas/química , Ubiquitina-Proteína Ligases/metabolismo
16.
Int Rev Neurobiol ; 155: 169-202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32854854

RESUMO

Neurodegenerative diseases are highly debilitating illnesses and a growing cause of morbidity and mortality worldwide. Mitochondrial dysfunction and impairment of mitochondrial-specific autophagy, namely mitophagy, have emerged as important components of the cellular processes underlying neurodegeneration. Defective mitophagy has been highlighted as the cause of the accumulation of damaged mitochondria, which consequently leads to cellular dysfunction and/or death in neurodegenerative diseases. Here, we highlight the recent advances in the molecular mechanisms of mitochondrial homeostasis and mitophagy in neurodegenerative diseases. In particular, we evaluate how mitophagy is altered in Alzheimer's, Parkinson's, and Huntington's diseases, as well as in amyotrophic lateral sclerosis, and the potential of restoring mitophagy as a therapeutic intervention. We also discuss the interlinked connections between mitophagy and innate immunity (e.g., the involvement of Parkin, interferons and TRIM21) as well as the opportunity these pathways provide to develop combinational therapeutic strategies targeting them and related molecular mechanisms in such neurodegenerative diseases.


Assuntos
Mitofagia , Doenças Neurodegenerativas/terapia , Animais , Autofagia , Humanos , Imunidade Inata , Doenças Neurodegenerativas/imunologia , Transdução de Sinais
17.
J Biol Chem ; 295(28): 9676-9690, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467226

RESUMO

The accumulation of amyloid Tau aggregates is implicated in Alzheimer's disease (AD) and other tauopathies. Molecular chaperones are known to maintain protein homeostasis. Here, we show that an ATP-dependent human chaperone system disassembles Tau fibrils in vitro We found that this function is mediated by the core chaperone HSC70, assisted by specific cochaperones, in particular class B J-domain proteins and a heat shock protein 110 (Hsp110)-type nucleotide exchange factor (NEF). The Hsp70 disaggregation machinery processed recombinant fibrils assembled from all six Tau isoforms as well as Sarkosyl-resistant Tau aggregates extracted from cell cultures and human AD brain tissues, demonstrating the ability of the Hsp70 machinery to recognize a broad range of Tau aggregates. However, the chaperone activity released monomeric and small oligomeric Tau species, which induced the aggregation of self-propagating Tau conformers in a Tau cell culture model. We conclude that the activity of the Hsp70 disaggregation machinery is a double-edged sword, as it eliminates Tau amyloids at the cost of generating new seeds.


Assuntos
Doença de Alzheimer , Amiloide , Encéfalo , Proteínas de Choque Térmico HSP70 , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Front Immunol ; 10: 1139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214163

RESUMO

Ordered assemblies of proteins are found in the postmortem brains of sufferers of several neurodegenerative diseases. The cytoplasmic microtubule associated protein tau and alpha-synuclein (αS) are found in an assembled state in Alzheimer's disease and Parkinson's disease, respectively. An accumulating body of evidence suggests a "prion-like" mechanism of spread of these assemblies through the diseased brain. Under this hypothesis, assembled variants of these proteins promote the conversion of native proteins to the assembled state. This likely inflicts pathology on cells of the brain through a toxic gain-of-function mechanism. Experiments in animal models of tau and αS pathology have demonstrated that the passive transfer of anti-tau or anti-αS antibodies induces a reduction in the levels of assembled proteins. This is further accompanied by improvements in neurological function and preservation of brain volume. Immunotherapy is therefore considered one of the brightest hopes as a therapeutic avenue in an area currently without disease-modifying therapy. Following a series of disappointing clinical trials targeting beta-amyloid, a peptide that accumulates in the extracellular spaces of the AD brain, attention is turning to active and passive immunotherapies that target tau and αS. However, there are several remaining uncertainties concerning the mechanism by which antibodies afford protection against self-propagating protein conformations. This review will discuss current understanding of how antibodies and their receptors can be brought to bear on proteins involved in neurodegeneration. Parallels will be made to antibody-mediated protection against classical viral infections. Common mechanisms that may contribute to protection against self-propagating protein conformations include blocking the entry of protein "seeds" to cells, clearance of immune complexes by microglia, and the intracellular protein degradation pathway initiated by cytoplasmic antibodies via the Fc receptor TRIM21. As with anti-viral immunity, protective mechanisms may be accompanied by the activation of immune signaling pathways and we will discuss the suitability of such activation in the neurological setting.


Assuntos
Autoanticorpos/metabolismo , Encéfalo/metabolismo , Imunoterapia/métodos , Doenças Neurodegenerativas/imunologia , Vacinas/imunologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/terapia
19.
Nat Protoc ; 14(8): 2596, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30504914

RESUMO

In the version of this paper originally published, the present address of W.A. McEwan was accidentally omitted. This address (UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK) has now been added as affiliation 3, and the equal-contributions note has been updated to affiliation 4. These changes are reflected in the PDF and HTML versions of the protocol.

20.
Nat Protoc ; 13(10): 2149-2175, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250286

RESUMO

Protein depletion is a key approach to understanding the functions of a protein in a biological system. We recently developed the Trim-Away approach in order to rapidly degrade endogenous proteins without prior modification. Trim-Away is based on the ubiquitin ligase and Fc receptor TRIM21, which recognizes antibody-bound proteins and targets them for degradation by the proteasome. In a typical Trim-Away experiment, protein degradation is achieved in three steps: first, introduction of an antibody against the target protein; second, recruitment of endogenous or exogenous/overexpressed TRIM21 to the antibody-bound target protein; and third, proteasome-mediated degradation of the target protein, antibody and TRIM21 complex. Protein degradation by Trim-Away is acute and rapid, with half-lives of ~10-20 min. The major advantages of Trim-Away over other protein degradation methods are that it can be applied to any endogenous protein without prior modification; that it uses conventional antibodies that are widely available; and that it can be applied to a wide range of cell types, including nondividing primary human cells, for which other loss-of-function assays are challenging. In this protocol, we describe the detailed procedures for antibody preparation and delivery in mouse oocytes and cultured cells via microinjection and electroporation. In addition, we provide recommendations for antibody selection and validation, and for the generation of TRIM21-overexpressing cell lines for cases in which endogenous TRIM21 is limited. A typical Trim-Away experiment takes just a few hours.


Assuntos
Anticorpos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Ribonucleoproteínas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Eletroporação/métodos , Feminino , Humanos , Camundongos , Microinjeções/métodos , Oócitos/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...